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Objective: More than 20% of the US population suffers from laryngopharyngeal reflux. Although dietary/lifestyle modifi-
cations and alginates provide benefit to some, there is no gold standard medical therapy. Increasing evidence suggests that
pepsin is partly, if not wholly, responsible for damage and inflammation caused by laryngopharyngeal reflux. A treatment spe-
cifically targeting pepsin would be amenable to local, inhaled delivery, and could prove effective for endoscopic signs and
symptoms associated with nonacid reflux. The aim herein was to identify small molecule inhibitors of pepsin and test their effi-
cacy to prevent pepsin-mediated laryngeal damage in vivo.

Methods: Drug and pepsin binding and inhibition were screened by high-throughput assays and crystallography. A mouse
model of laryngopharyngeal reflux (mechanical laryngeal injury once weekly for 2 weeks and pH 7 solvent/pepsin instillation
3 days/week for 4 weeks) was provided inhibitor by gavage or aerosol (fosamprenavir or darunavir; 5 days/week for
4 weeks; n = 3). Larynges were collected for histopathologic analysis.

Results: HIV protease inhibitors amprenavir, ritonavir, saquinavir, and darunavir bound and inhibited pepsin with IC50 in
the low micromolar range. Gavage and aerosol fosamprenavir prevented pepsin-mediated laryngeal damage (i.e., reactive epi-
thelia, increased intraepithelial inflammatory cells, and cell apoptosis). Darunavir gavage elicited mild reactivity and no dis-
cernable protection; aerosol protected against apoptosis.

Conclusions: Fosamprenavir and darunavir, FDA-approved therapies for HIV/AIDS, bind and inhibit pepsin, abrogating
pepsin-mediated laryngeal damage in a laryngopharyngeal reflux mouse model. These drugs target a foreign virus, making
them ideal to repurpose. Reformulation for local inhaled delivery could further improve outcomes and limit side effects.

Level of evidence: NA.
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INTRODUCTION
Laryngopharyngeal reflux (LPR), the backflow of

gastric contents into the laryngopharynx, is an important
health problem. LPR affects both children and adults,
and the clinical spectrum is extensive. Unlike patients
with gastroesophageal reflux (GER) which is limited to
the esophagus, many LPR patients do not experience acid
indigestion but present with symptoms due to chronic
laryngeal irritation, such as chronic cough, throat-clear-
ing, post-nasal drip, dysphonia, globus, dysphagia, and
dyspnea.1–3 Significant evidence supports the contribu-
tion of chronic LPR to serious and life-threatening illness
including airway stenosis, reactive airway disease, and
laryngeal cancer.4–14 LPR is estimated to affect more
than 20% of the United States population and contribute
to 10% visits to otolaryngologists.15–17 The economic bur-
den of LPR is over $52 billion per year, which is 5.6-fold
greater than that of GER; 52% of the burden is attributed
to proton pump inhibitors (PPIs).18,19

Although PPI therapy is a mainstay in the treat-
ment of GER disease (GERD), its efficacy for LPR is
poor.20–23 In clinical practice, it was believed that
patients with reflux laryngitis require higher doses and
longer trials of PPIs than those with typical GERD given
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the assumption that the upper airway is more sensitive
to acid reflux than the esophagus.3,24,25 However,
placebo-controlled trials have failed to demonstrate the
therapeutic benefit of PPIs.26–31 Although Reichel et al.
and Lam et al. reported symptom improvement in ran-
domized, double-blind, placebo-controlled trials,32,33 Vaezi
argued that improvement was for heartburn rather than
throat symptoms.34 Where laryngeal symptom improve-
ment has been reported it was found proportionally
higher in GERD patients than in those without
GERD.35,36 Given the paucity of data supporting acid-
suppression therapy for extraesophageal symptoms, the
American Gastroenterological Association guidelines for
GERD recommend against its use for acute treatment of
patients with potential extraesophageal reflux (EER) syn-
dromes (laryngitis, chronic cough) absent typical GERD
symptoms.37 Despite such advice, treatment for LPR fre-
quently continues to involve empiric therapy with
PPIs.38,39

Although the acidity of reflux alone can damage the
upper airways, combined multichannel intraluminal
impedance-pH (MII-pH) monitoring has demonstrated
that many episodes of LPR are nonacidic, and that
weakly and nonacidic reflux is associated with persistent
symptoms in acid-suppressed patients.40–43 These symp-
toms are alleviated by anti-reflux surgery44–50 and may
be ameliorated by less invasive strategies that limit
reflux occurrence or neutralize reflux constituents beyond
acid (e.g., dietary and lifestyle modification and over-the-
counter alginate products).51–54 Thus, one or more non-
acid components of gastric refluxate must have a role in
laryngeal damage. There is increasing evidence that pep-
sin, which is present in all refluxate,55 is partly, if not
wholly, responsible for damage and inflammation caused
by LPR.20,39,56–60

Pepsin is a proteolytic enzyme which is synthesized
and secreted as the zymogen pepsinogen by chief cells in
the gastric fundus and subsequently cleaved upon intro-
duction to the acidic stomach lumen to produce pepsin.
Pepsin is maximally active at pH 2 and retains activity
up to pH 6.5. Although stable at pH 8, pepsin is irrevers-
ibly inactivated at higher pH.58,61 The stomach and
esophagus have intrinsic defenses against pepsin (mucus,
peristalsis, and bicarbonate secretion), however, laryn-
geal tissues do not.62 Pepsin is thought to play a key role
in mucosal damage and inflammation during nonacidic
reflux.8,9,58,59,62–74 At neutral pH, pepsin is taken up by
laryngeal and hypopharyngeal cells by receptor-mediated
endocytosis and retained in intracellular vesicles of low
pH where it is presumed to be reactivated.58,67,68 The con-
sequence is chronic inflammation, which in turn, gives
rise to symptoms. Endocytosed nonacidic pepsin induces
a proinflammatory cytokine gene expression profile in
hypopharyngeal cells similar to that which contributes to
disease severity during GERD.59 Inhibition of the proteo-
lytic activity of pepsin abrogates this damage and inflam-
mation.8,60,68,75–78 The on-surgical treatment options for
nonacid reflux.

With compelling evidence of nonacid proximal reflux
of pepsin and its association with laryngeal and pharyn-
geal symptoms and endoscopic findings, the significant

cost and risk of prolonged PPI therapy which continues to
date despite its inefficacy in the absence of a gold stan-
dard medical therapy, and the limitations of alternative
non-surgical treatment options such as the short-lived
activity of over-the-counter products intended to provide
temporary relief and the burden of adherence to dietary
and lifestyle modifications, a new medical treatment
which specifically targets pepsin would be of great
value.18,20,39,46,53,59,65,67,68 This new approach would be
amenable to local treatment of readily accessible airways
affected by LPR allowing lower dosing, the advantage of
which is self-evident in that targeted delivery would
simultaneously increase efficacy and limit systemic side
effects.

We and others have discussed the promise of inhibi-
tors of peptic activity and/or receptor antagonists as
potential new therapeutics for LPR.20,65,68,79 Given evi-
dence that airway damage during EER is more closely
associated with pepsin than acid, we hypothesize that a
drug that targets pepsin will be effective for signs and
symptoms associated with nonacid reflux. Local inhaled
administration of such a drug would be more efficacious
than oral. Herein, therapeutic compounds were screened
for pepsin binding and inhibition. Specific HIV protease
inhibitors that inhibited pepsin were administered orally
and by inhalation in an LPR mouse model to assess their
potential for the treatment of LPR.

METHODS

Binding and Activity Assays
To examine whether HIV protease inhibitors bound and

inhibited pepsin, we developed assays based on fluorescence polar-
ization which measures size-dependent molecular rotation thereby
permitting detection of degradation, association, and dissociation
events.80 A competitive binding assay was designed employing
pepstatin, an inhibitor of sub-nanomolar affinity.81 Pepstatin-
Alexa647 was synthesized by dissolving 1 mg pepstatin A (Sigma-
Aldrich) in a 50:50 mixture of dimethylformamide (DMF) and
dimethylsulfoxide (DMS) followed by the addition of N,N,N0,N0-
Tetramethyl-O-(N-succinimidyl)uronium tetrafluoroborate (0.6 mg)
and trimethylamine (10 μl) DMF. The mixture was stirred for
1 h, after which 1 mg Alexa Fluor 647 Cadaverine, Disodium
Salt (ThermoFisher Scientific) was added. After 2 h, the solvents
were evaporated under high vacuum (35�C) and residue partially
dissolved in 10% methanol and transferred onto a C18 cartridge
(Waters Corporation, Milford, MA). Increasing percentages of
methanol were used for the elution. Pepstatin-Alexa647 eluted
at 45% methanol. An enzymatic inhibition assay was designed
using casein substrate.82 Bovine alpha casein (Sigma-Aldrich,
St. Louis, MO) was labeled with Alexa Fluor 647 Carboxylic Acid,
Succinimidyl Ester (ThermoFisher Scientific, Waltham, MA) as
described.82 Briefly, the two were combined at 2.5 ug/mg label to
protein ratio in 0.1 M sodium bicarbonate for 15 min and labeled
casein was separated from unbound label in a Sephadex G-25
(Sigma-Aldrich) column comprised of 90 � 5 mm packed beads in
a glass Pasteur pipette, eluted with dPBS pH 7.4 (ThermoFisher
Scientific). The fast-moving band (casein-bound fluorophore) was
collected in �0.4 ml volume. Concentration of resultant probe
(casein-Alexa647 in PBS-azide) was estimated via spectrophotome-
try using Beer’s law (Implen Nanophotometer, Implen, Inc. West-
lake Village, CA).
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Assays were optimized using ranges of 0.3–1000 μM
unlabeled pepstatin, 100–500 nM pepstatin-Alexa647 or casein-
Alexa647 probe, 0.003–3 U/μl porcine pepsin (Worthington Bio-
chemical Corporation, Lakewood, NJ), and 5%–37.5% DMSO
(HIV protease inhibitor diluent) in 0.1 M HCl, pH 1 with 0.01%
v/v Tween-20 in 20 μl volumes in 384-well black optical plates
(Nunc, Roskilde, DK) and read on a BioTek Cytation 5 (BioTek
Instruments, Winooski, VT) with far-red FP filter cube (excita-
tion/emission 620/680 nm). Unlabeled pepstatin dose–response
curves were used to ensure that the assays were responsive to
pepsin inhibition. Conditions yielding maximal dynamic assay
range were used to assess HIV protease inhibitors: 100 nM
probe, 0.03 U/ul porcine pepsin A, 37.5% DMSO for competitive
binding assay, and 200 nM probe, 0.01 U/μl pepsin, 5% DMSO
for peptic activity assay. The HIV protease inhibitors
(amprenavir, ritonavir, lopinavir, saquinavir mesylate, nelfinavir
mesylate hydrate, darunavir ethanolate, indinavir sulfate salt
hydrate; all Sigma-Aldrich) were dissolved in DMSO and tested
under optimized assay conditions over three logs concentration.
Assays were performed twice with triplicate reactions read for
5 min and mean mP plotted against probe concentration (binding
assay) or read at <2 min intervals over 30 min with mean mP of
plotted over time (activity assay). Half maximal inhibitory con-
centration (IC50) of inhibitors were calculated from kinetic traces
analyzed using an online tool (https://icekat.herokuapp.com/
icekat).83 mP was normalized to blank (absent inhibitor) to
derive percent bound or activity.

Crystallization
Saturated solutions of HIV protease inhibitors (amprenavir,

ritonavir, and darunavir ethanolate) were prepared in DMSO
and centrifuged for 10 min at 31,000 rcf. Supernatants were
added to pepsin (200 mg/ml in water) at 1.6% (v/v) f.c. Due to
poor solubility, a solvent for saquinavir mesylate was selected
from the CryoSol screen (Molecular Dimensions, Holland, OH).
CryoSol mixture SM2 (consisting of 37.5% v/v dioxane, 25% v/v
DMSO, 12.5% v/v ethylene glycol, 12.5% v/v 1,2-propanediol, and
12.5% v/v glycerol) was selected as it provided both high solubil-
ity and protein compatible conditions for the co-crystallization
mixture. Supernatant of saturated saquinivar solution in SM2
was combined with pepsin at 5% f.c. (v/v). Crystallization condi-
tions were optimized by screening 200 mg/ml pepsin in the Salt
RX screen (Hampton Research, Viejo, CA). Small bipyramid-
shaped crystals formed in 3.5 M ammonium chloride and 0.1 M
sodium acetate trihydrate pH 4.6 after 1 week at room tempera-
ture served as microseed stock for co-crystallization with
amprenavir, ritonavir and darunavir ethanolate per previously
described methods.84 Diffraction quality crystals (triangular bi-
pyramids, approximately 200 � 100 � 100 μm) formed after 2–
7 days from hanging drops of 2 ul pepsin (180–210 mg/ml) and
1ul microseed solution serially diluted 10–�100 above 3–4 M
ammonium chloride and 0.1 M sodium acetate trihydrate pH 4.6.
Crystals were cryoprotected by 30% glucose, 5 M ammonium
chloride, and 0.1 M sodium acetate trihydrate pH 4.6 and
plunged in liquid nitrogen. Co-crystallization with saquinavir
was performed in 0.1 M acetic acid rather than sodium acetate
trihydrate as this permitted large crystal formation without a
microseed; crystals were cryoprotected by 30% w/v glucose, 5 M
ammonium chloride, and 0.1 M sodium acetate trihydrate pH 4.6
and plunged in liquid nitrogen.

Diffraction datasets were collected at Life Sciences Collabo-
rative Access Team (LS-CAT) beamlines at the Advanced Photon
Source (APS), Argonne National Laboratory, equipped with MAR
300 CCD or Dectris Eiger 9 M detectors and data were indexed,
integrated, and scaled using MOSFLM85 or HKL2000.86

Specifically, for pepsin:amprenavir, a 1.9 Å diffraction data
set was collected at LS-CAT beamline 21-ID-F with a MAR
300 CCD detector using a 50 � 50 μm beam at a wavelength of
0.97872 Å. A total of 262 frames were collected from φ = 0� to
130.5� with an oscillation range of 0.5� and detector distance of
250 mm. Exposure time was 0.5 s. Diffraction data were indexed,
integrated, and scaled using MOSFLM.

For pepsin:ritonavir, a 2.1 Å diffraction data set was col-
lected at LS-CAT beamline 21-ID-D with Dectris Eiger 9 M
detector using a 50 � 50 μm beam at 1.12721 Å. 900 frames were
collected from φ = 0� to 180�, while oscillating at a rate of 1�/sec
and slicing of 5 images/�. Crystal-to-detector distance was
160 mm. Diffraction data were indexed, integrated, and scaled
using MOSFLM.

For pepsin:darunavir, a 1.9 Å diffraction data set was col-
lected at LS-CAT beamline 21-ID-G with MAR 300 CCD detector
and 50 � 50 μm beam at 0.97856 Å. 900 frames were collected
from φ = 0� to 180� with an oscillation range of 0.2� and detector
distance of 260 mm. Exposure time was 0.3 s. Diffraction data
were indexed, integrated, and scaled using HKL2000.

For pepsin:saquinavir, a 1.9 Å diffraction data set was col-
lected at LS-CAT beamline 21-ID-F with MAR 300 CCD detector
using a 50 � 50 μm beam at 0.97872 Å. 400 frames were col-
lected from φ = 20� to 100� with an oscillation range of 0.2� and
detector distance of 200 mm. Exposure time was 0.5 s. Diffrac-
tion data were indexed, integrated, and scaled using MOSFLM.

Initial phases were obtained by molecular replacement in
PHASER.87 Unliganded porcine pepsin (PDB ID 4PEP) with B
factors reset to 20.00 Å and solvent molecules removed was the
search model. Model refinement was performed using phenix.
refine (PHENIX87–89) and COOT.90,91 Geometric restraints for
compounds were obtained from CCP4 monomer library.92 Models
were validated using MolProbity93 as implemented in the PHE-
NIX suite. Models of ritonavir and saquinavir were additionally
optimized using PDB-REDO server94 prior to deposition. Elec-
tron density maps were generated via POVSCRIPT and POV-
Ray and schematic representation by MarvinSketch,(http://www.
ChemAxon.com) and Adobe Illustrator CC 2020.

In Vivo Mouse Model
Experiments were approved by the University of Minne-

sota (UMN) Institutional Animal Care and Use Committee
(1712-35415A) and performed at UMN. Three replicate ani-
mals per treatment condition were anticipated to suffice for
verification of reproducibility in each experiment without
excessive use of animal life. The three mice were randomly
allocated to treatment groups. No data were excluded from
the analysis.

Six-week-old female Jackson A/J mice (Jackson Laboratory,
Bar Harbor, ME) were fed D-62 powdered Wattenberg diet, 2 g/
mouse/day95 and allowed to acclimate for 1 week upon arrival
prior to experiments. In accord with previously established
methods for modeling aerodigestive tract damage attributed to
GERD and LPR,1,95–99 mechanical injury applied during the first
2 weeks of a four-week treatment course was used to predispose
the laryngeal mucosa to chemical injury by pepsin/acid applied
throughout the 4 weeks. When performed in this manner,
mechanical injury increases mucosal susceptibility to subsequent
chemical injury while leaving little detectable injury at the con-
clusion of a four-week treatment course.95 Mechanical injury was
performed on all animals (including control) once weekly during
the first 2 weeks of treatment as described (see experimental
schema, Fig. 1).95 Briefly, anesthetized mice were suspended by
upper teeth on a slanted board under an operating microscope.
Subglottis, glottis, and supraglottis were wounded under 6x
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magnification using a blunt, bent (135�) needle pulled distally to
proximally making a mild abrasion.

In a preliminary experiment to validate the LPR mouse
model (i.e., laryngeal damage by pepsin at neutral and acidic
pH), 20 μl saline (solvent control) or 0.3 mg/ml pepsin at pH 7.0
or 4.0 were provided to mice (n = 3) by laryngeal instillation at
24, 48, and 72 h after mechanical injury during weeks 1 and
2 (Fig. 1); laryngeal instillation without wounding (3 days/week)
continued during weeks 3 and 4. Mice were anesthetized with
225–240 mg/kg intraperitoneal Avertin (2,2,2-Tribromoethanol)
prior to each wounding and laryngeal instillation. Mice were
sacrificed at conclusion of the fourth week.

To test the protective effect of HIV protease inhibitors on
pepsin-mediated damage in vivo, inhibitors were delivered by aero-
sol or gavage concurrently with wounding (days 2, 8) and solvent/
pepsin instillation (days 3–5, 9–11, 16–18, and 23–25). Aerosol or
gavage was provided on days 1–5, 8–12, 15–19, and 22–25, and mice
sacrificed day 26. Mice were anesthetized with isoflurane (3% in 2.5
LPM, 3–5 min prior to procedures) as opposed to Avertin due to fre-
quency. Lexiva and Prezista (hereafter referred to by generic:
fosamprenavir and darunavir, respectively) were used for gavage,
and respective pure drugs for aerosol (fosamprenavir from Anant
Pharmaceuticals, Ambernath, Maharashtra India, and darunavir
from Ambeed, Arlington Heights, IL). Gavage dose was equivalent
to that prescribed to HIV patients (20 mg/kg/day fosamprenavir;
8.6 mg/kg/day darunavir). Aerosol was generated as described.100

Briefly, a 10 ml suspension of drug in ethanol was placed in the baf-
fle, such that the concentration would remain constant at the equi-
librium solubility. Droplets of ethanol containing the dissolved drug
were generated by an ultrasonic atomizer (nominal frequency
1.7 MHz) and entrained by air at a flow rate of 0.5 LPM with a
custom-built glass baffle (UMN Department of Chemistry Glass
Shop). The aerosol cloud was then passed through a cylindrical dry-
ing column containing an annular ring of charcoal. The ethanol was
removed and the emanating dry aerosol particles of pure drug were
then directed into the exposure chamber. The mass deposited on

filters was measured gravimetrically and total output rate (mg/min)
was determined. The aerosol concentration (mass/volume of air) was
calculated by dividing the total output rate by the air flow rate (0.5
LPM). The inhaled mass of drug (Minh) for each mouse was defined
as Minh = [Aerosol]*RMV*t, where Aerosol is the aerosol concentra-
tion of drug, RMV is the respiratory minute volume of the mice
(0.025 L/min), and t is the aerosol exposure time. Aerosol concentra-
tion was 0.09 mg/L fosamprenavir or 1.2 mg/L darunavir, therefore
given the respiratory minute volume of mice (0.025 L/min), the
inhaled mass was 0.93 mg/kg/day fosamprenavir or 12 mg/kg/day
darunavir. Actual mass deposited was not determined but antici-
pated to be 10% of inhaled mass (the deposition fraction of 1 μm
aerosol particles in mice).

Tissues were collected, fixed in paraformaldehyde, embed-
ded in paraffin, and 4um sections stained with hematoxylin and
eosin (H&E) via automated stainer. Slides were reviewed by a
board-certified pathologist (JM) blinded to treatment groups.

RESULTS

Binding and Activity Assays
Four of the seven assayed HIV protease inhibitors

bound and inhibited pepsin at low micromolar concentra-
tions (Fig. 2): amprenavir, darunavir, ritonavir, and
saquinavir. The in vitro activity of these four HIV prote-
ase inhibitors against pepsin provided the foundational
support for further study.

Structural Data
To aid interpretation of the in vitro binding and inhi-

bition data, commercially available porcine pepsin
(EC 3.4.23.1) was used for co-crystallization experiments

Fig. 1. Treatment schema of in vivo mouse study.

Fig. 2. Binding (A) and activity (B) curves of pepsin with HIV protease inhibitors. [Color figure can be viewed in the online issue, which is avail-
able at www.laryngoscope.com.]
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to obtain structural data. Crystallization of human pepsin
collected from volunteers failed presumably due to sam-
ple heterogeneity. Porcine pepsin shares 86% sequence
identity with the human enzyme (PDB ID 1PSN)101 and
its structure is nearly identical (root mean square devia-
tion (RMSD) for all Cα atoms = 0.50 Å). Minor differences
in tertiary structure are localized to a loop of residues
(277–282) which is not part of the binding cleft. Residues
lining the active site cleft are highly conserved: of 17 mak-
ing direct contact with inhibitors herein, just two differed
(T12 and V291). Thus, porcine was deemed an acceptable
substitute for human pepsin for assessing structural
biology.

Porcine pepsin was co-crystalized amprenavir,
darunavir, ritonavir, and saquinavir (Table I and Fig. 3).
All are peptidomimetics; the alcohol of the central phe-
nylalaninol residue, which mimics the tetrahedral inter-
mediate of peptide bond cleavage, is bound between

catalytic aspartate residues, D32 and D215. Binding
directionality of each (amino group of phenylalaninol on
the prime side of the binding site) was the same as that
for pepstatin.101 Binding relied on van der Waals contacts
between side chains of inhibitors and residues lining the
binding site; few (5, 6) hydrogen bonds were observed.
For example, in the pepsin�ritonavir complex (Fig. 3), the
β-homophenylalanine side chain is bound in the P1 sub-
site, making van der Waals contacts with F111, F117,
and I120. The phenylalaninol side chain is bound in the
P1 subsite, contacting I213, M289, V291, and I300. The
thiazole and isopropyl-thiazole groups of ritonavir do not
have any stabilizing interactions with the active site. The
electron density for these groups is correspondingly
poorly defined, and the B-factors, which reflect the preci-
sion of the atomic positions, for these parts of the mole-
cule are extremely high. The structure of the
pepsin�saquinavir complex is similar in that the side

TABLE I.
Crystallographic Data Collection and Model Refinement Statistics.

Pepsin�Amprenavir Pepsin�Ritonavir Pepsin�Darunavir Pepsin�Saquinavir

PDB Entry 6XCT 6XCY 6XD2 6XCZ

Data Collection

Resolution (Å) (last shell)* 72.02–1.99 (2.04–1.99) 53.17–2.05 (2.11–2.05) 49.34–1.90 (1.97–1.90) 57.50–1.89 (1.93–1.89)

Space group P 65 2 2 P 65 2 2 P 65 2 2 P 65 2 2

a, b, c (Å) 66.1, 66.1 288.1 66.2, 66.2, 285.5 66.2, 66.2, 290.0 66.4, 66.4, 284.6

α, β, γ (�) 90, 90, 120 90, 90, 120 90, 90, 120 90, 90, 120

Rmerge* 0.057 (0.099) 0.10 (0.56) 0.088 (0.25) 0.091 (0.73)

Rmeas* 0.060 (0.11) 0.13 (0.73) 0.092 (0.26) 0.110 (0.85)

Rpim* 0.021 (0.038) 0.084 (0.46) 0.026 (0.077) 0.054 (0.42)

CC1/2* 0.999 (0.991) 0.989 (0.593) 0.995 (0.981) 0.995 (0.649)

No. of unique reflections* 26876 (1807) 23751 (1831) 30916 (2998) 30114 (1885)

Completeness (%)* 99.9 (99.5) 98.2 (99.8) 99.85 (99.90) 97.8 (98.0)

Multiplicity* 13.4 (12.8) 3.1 (3.2) 12.0 (11.8) 5.5 (5.9)

⟨I/σ(I)⟩* 31.6 (18.8) 6.3 (2.3) 35.71 (10.34) 7.9 (1.6)

Model Refinement

Reflections used in refinement* 26760 (2580) 23747 (2360) 30888 (2995) 30072 (2948)

Reflections used for Rfree* 1312 (114) 1214 (116) 1574 (125) 1544 (145)

Rcryst (Rfree)* 0.1907 (0.1906) 0.2173 (0.2586) 0.1997 (0.1887) 0.2260 (0.2941)

Wilson B-factor (Å2) 17.73 34.87 18.85 27.03

Average B factor (Å2) 20.66 45.32 22.66 38.38

Protein atoms 19.62 44.98 21.61 37.97

Ligand atoms 24.29 71.10 26.63 59.65

Solvent 27.46 40.81 29.22 38.11

Root-Mean-Square (RMS) Deviations

Bond lengths (Å) 0.009 0.011 0.013 0.015

Bond angles (�) 0.77 1.48 1.02 1.68

Coordinate error (Å)† 0.14 0.12 0.15 0.10

Ramachandran Statistics

Favored/allowed/outliers (%) 99.37/0.32/0.32 97.82/1.87/0.31 99.37/0.32/0.32 98.13/1.56/0.31

Rotamer outliers (%) 0.00 1.82 0.00 2.92

Clashscore 0.85 2.72 2.33 2.93

*Values in parentheses apply to the high-resolution shell indicated in the resolution row.
†Maximum-likelihood based estimates of coordinate error.
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chain of the phenylalaninol residue is interacting with
the P10 subsite, but the two ends of the molecule, the
quinoline and decahydroisoquinoline moieties, also have
poor density and high B-factors. The amprenavir and
darunavir structures follow the same pattern. The phe-
nylalaninol residues of both inhibitors occupy the P10 site,
interacting with I213, M289, V291, and I300. The
isobutyl groups, mimicking leucine residues, occupy the
P1 site, interacting with F111, F117, and I120. In both
amprenavir and darunavir, one of the oxygen atoms of
the sulfonamide moiety makes a hydrogen bond with the
backbone amide of T77. The aniline groups make no polar

contacts with the active site. At the opposite end of the
molecules where the two compounds differ, the tetrahy-
drofuran group of amprenavir forms a hydrogen bond
with the phenolic oxygen of Y189. The bis-
tetrahydrofuran group of darunavir, however, cannot
have this interaction with the active site and is limited to
van der Waals contacts with I73, T74, I128, and Y189.
The structures and binding poses of amprenavir and
darunavir were similar and provided no explanation for
their disparity in IC50.

In Vivo Mouse Model
Pepsin-mediated laryngeal epithelial damage was

observed at pH 4 and 7 in the mouse in vivo model which
employed pepsin with or without acid exposure following
mechanical injury of the larynx (Fig. 4). Animals in the
pH 7 control group had normal laryngeal epithelium of
1–2 cells thick with cilia present and no inflammation,
keratinization, or necrosis; findings indicated no detect-
able mucosal damage in the control group due to mechan-
ical injury during the first 2 weeks of treatment or pH 7
solvent. Laryngeal epithelium in the pH 4 group was
reactive, thickened (3–4 cells thick), and keratinized with
loss of cilia. That from the pepsin-pH 7 group had an
intermediate thickness (2–3 cells), evidence of keratiniza-
tion, increased nuclear to cytoplasmic ratio, and loss of
polarization. That from the pepsin-pH 4 group exhibited
total loss of epithelium due to necrosis and inflammatory
cell infiltrate.

Fosamprenavir gavage equivalent to the dose used to
treat HIV in humans prevented pepsin-mediated laryngeal
damage, defined as reactive epithelia, increased intra-
epithelial inflammatory cells, and apoptosis (Fig. 5). Mild
reactivity elicited by oral darunavir (absent in darunavir
aerosol group; Fig. 4) obscured the ability to detect its
effect on pepsin-mediated damage. Fosamprenavir aerosol
prevented pepsin-mediated laryngeal injury (Fig. 4).
Darunavir aerosol provided moderate protection against
pepsin-mediated damage: while epithelial injury was pre-
sent (mildly increased intraepithelial inflammatory cells
and reactive epithelial cells), no apoptosis was observed as
it was in mice treated with pepsin-pH 7 and sham
inhalation.

DISCUSSION
For the past two decades, the treatment of LPR has

focused on suppressing gastric acid production. With the
introduction of MII-pH technology, it is now understood
that LPR is commonly nonacidic and that nonacid proxi-
mal events are associated with laryngeal endoscopic signs
and symptoms.39–46,48–50,102 These findings sparked
investigations into the nonacidic components of gastric
refluxate.

Although bile induces mucosal damage at weakly
and non- acid pH experimentally, it has been argued that
“there is no evidence that the same mechanism occurs in
the human larynx.”57 The clinical relevance of experimen-
tal findings has been called into question. Unconjugated
bile acids, which cause damage at neutral-high pH such

Fig. 3. Pepsin and HIV protease inhibitor structural data. Left
panels: The active site of porcine pepsin with HIV protease inhibitor
bound. The 2Fo-Fc electron density map contoured at 1.0σ is
shown as magenta mesh and the 2Fo-Fc simulated annealing com-
posite omit map, also contoured at 1.0σ, is shown as green mesh.
Right panels: Schematic view of the active site with ritonavir bound
showing potential hydrogen bonding interactions as green, dashed
lines. Electron density maps were generated via POVSCRIPT and
POV-Ray and schematic representation by MarvinSketch, and
Adobe Illustrator. [Color figure can be viewed in the online issue,
which is available at www.laryngoscope.com.]
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as that of the laryngopharynx, are rarely found in gastric
refluxate.56,69 Further, concentrations of bile salts/acids
found to damage the larynx and hypopharynx experimen-
tally are 1000-fold greater than those reported in the air-
ways of patients with LPR, GERD, and asthma, or lung
disease (0.3–50 mM96,103,104 vs. 0.8–32 uM105–109) and
result in morphologic changes inconsistent with those of
LPR patients such as cell membrane “blebbing.”110

Pepsin is present in all refluxate.55 Moreover, it is fre-
quently detected in airway tissue and secretions from LPR
patients but absent in MII-pH-confirmed reflux-free sub-
jects, and thus may be predictive of reflux-attributed symp-
toms and disease.20,39,46,50,55,59,65,67,68,111,112 Pepsin at
1 mg/ml in the stomach is diluted by saliva as it is refluxed
proximally. A range of concentrations have been reported
in airways: 2.5 μg/ml in saliva, 61.5 μg/ml in nasal
secretions,113,114 and 360 μg/ml in middle ear fluid.115 To
model chronic LPR within a limited experimental time-
frame, 300 μg/ml was employed herein.1,77,116,117 Pepsin-
mediated damage and inflammatory changes reported
in vitro and in vivo, including the histologic changes
herein, are consistent with those observed in LPR
patients.62–64,66,70,118–122 Compelling evidence from multi-
ple groups highlights a major role for pepsin, independent
of gastric acid, in reflux-attributed laryngeal symptoms
and findings refractory to PPI therapy.

Although pepstatin is a potent pepsin inhibitor, its
poor water-solubility and pharmacokinetic properties
make it a suboptimal therapeutic candidate. Structural
data herein indicated that inhibitor binding to the
active cleft of pepsin is predominantly stabilized by van
der Waals contacts, making rational design of inhibi-
tors difficult. Testing existing inhibitors of other
aspartic proteases was therefore deemed the most

efficacious route for identification of a pepsin-targeting
therapeutic.

There are currently 10 commercially available HIV
protease inhibitors.123 Seven were amenable to testing in
our in vitro binding and inhibition assays and four
(amprenavir, ritonavir, saquinavir, and darunavir) bound
and inhibited pepsin with IC50 in the low micromolar
range, validating our hypothesis that existing therapeutic
protease inhibitors may exhibit anti-peptic activity. Two
drugs were selected for in vivo study based on anti-peptic
activity from in vitro assays, cost, and reported side
effects. Although saquinavir exhibits known side effects
and interactions (QT prolongation, heart block, high blood
lipids and liver problems) and has high cost, amprenavir,
ritonavir, and darunavir have minimal side effects (diar-
rhea, nausea, and vomiting).123 Darunavir is more costly
than amprenavir and ritonavir, but had the lowest IC50

for pepsin. Darunavir, with the lowest IC50, and
fosamprenavir, a prodrug of amprenavir with improved
bioavailability and favorable tolerability were therefore
selected for assessment in vivo. Given that proximal
reflux is inconsistent in surgical models of GER,124 we
employed a model involving mechanical wounding and
pepsin/acid instillation which reliably replicates epithe-
lial alterations similar to that observed in patients with
LPR.1,63,70,118,119,125 Using this model, the human-
equivalent dose of fosamprenavir, but not darunavir,
prevented pepsin-mediated laryngeal damage. When
administered locally by inhalation, treatment with either
compound preserved normal laryngeal histology despite
pepsin exposure.

As these data suggest, reformulation for inhaled,
local delivery would be expected to improve drug efficacy
and limit side effects. Preliminary computational fluid

Fig. 4. Laryngeal epithelial damage by pepsin and acid in vivo. Representative specimens from treatment groups. Paired images at �40 (A–D)
and �200 (E–H) magnification collected rostral to vocal folds, representing larynx: pH 7 (A, E), pH 4 (B, F), 0.3 mg/ml pepsin at pH 7 (C, G),
and 0.3 mg/ml pepsin at pH 4 (D, H). (A, E) Normal respiratory columnar epithelium (arrow) about one cell layer thick with basal polarization of
the nuclei and ciliated apical surfaces. (B, F) Reactive epithelium characterized by thickening (fat arrow) and focal squamous epithelia (long
arrow) with loss of cilia. In other areas, relative thickening of the mucosa with moderately increased nuclear to cytoplasmic (N:C) ratio and
irregular, condensed chromatin is seen. (C, G) Thickened respiratory epithelium with pseudostratification of the epithelial cells. Keratinization
(arrow) is present in multiple foci. Significant increase in the N:C ratio with loss of nuclear polarization and reduction in the apical cilia is evi-
dent in several regions of this treatment group. (D, H) Respiratory epithelium is necrotic (arrow) and replaced by an inflammatory exudate. A
brisk, acute inflammatory infiltrate infiltrates the submucosal area. Scale bars A–D = 100um; E–H = 50um. [Color figure can be viewed in the
online issue, which is available at www.laryngoscope.com.]
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dynamics analysis (unpublished) revealed an optimal par-
ticle size of 9–12 μm for deposition in the human larynx
in agreement with previous studies.126

The study herein was intended to investigate
whether a pepsin inhibitor may prevent laryngeal dam-
age caused by pepsin exposure in vivo. As with any exper-
imental observation, caution should be exercised when
translating in vivo findings from a limited number of ani-
mals to the clinical situation. Potential differences
between mouse and human respiratory pathobiology
should be kept in mind while evaluating the clinical
implications of these data. Established methods for
in vivo modeling of aerodigestive tract damage attributed
to GERD and LPR1,96–99 were utilized herein and demon-
strated mucosal damage consistent with the clinical pre-
sentation of LPR supporting their use for assessing drug
prevention of LPR-attributed injury: at the four-week con-
clusion of treatment, no mucosal damage was detectable
given mechanical injury and neutral solvent, whereas
multi-layered, reactive epithelia with apoptosis was
observed in the pepsin and acid treatment groups. The
mouse epiglottis occupies a transitional zone from strati-
fied squamous epithelium of the vocal fold to ciliated
pseudostratified columnar epithelium at the supraglottis
and infraglottis.127 To avoid misinterpreting squamous
epithelium of the vocal folds as signs of injury, represen-
tative images were collected rostral to vocal folds, exclu-
sively from tissue with visible thyroid to serve as a guide.
Additional features of reactive epithelia (darkened nuclei,
variable nuclear diameter, and increased nuclear to cyto-
plasmic ratio, intraepithelial inflammatory cells, and apo-
ptosis) in pepsin-treated groups, absent in control pH 7.0
and those receiving fosamprenavir or darunavir, con-
firmed epithelial reactivity due to pepsin and the efficacy
of HIV protease for prevention of pepsin-mediated injury.
Although these data are qualitative and would be bol-
stered by less subjective quantitative measures, the evi-
dence herein provides initial proof-of-concept that a
pepsin-targeting therapeutic may reduce mucosal damage
akin to that observed in LPR patients and supports more
in-depth investigation. Research is ongoing in our labora-
tory to examine fosamprenavir protection against pepsin-
mediated changes in laryngeal cell viability and inflam-
matory and carcinogenic gene and protein expressions.

Fig. 5. Legend on next page.

FIGURE 5 Fosamprenavir gavage and aerosol and darunavir aero-
sol prevent pepsin-mediated laryngeal damage in vivo. Representa-
tive specimens at �400. Solvent control group laryngeal epithelium
was characterized by a single layer of respiratory epithelium with no
reactive changes. In mice treated with pepsin-pH 7, the laryngeal
epithelium exhibited reactive epithelial changes and apoptotic
debris. Fosamprenavir gavage and aerosol protected against
pepsin-mediated laryngeal damage as indicated by normal histol-
ogy in mice receiving fosamprenavir gavage or aerosol with saline
(solvent), or fosamprenavir gavage or aerosol with pepsin-pH 7.
Darunavir gavage elicited mild reactivity (rare intraepithelial lympho-
cytes) in the saline treatment group; the darunavir gavage group
with pepsin-pH 7 appeared similar. Darunavir aerosol provided mild
protection against pepsin-mediated damage. Epithelial injury was
still present (mildly increased intraepithelial inflammatory cells and
reactive epithelial cells), however no apoptosis was observed. Scale
bar = 200 um. [Color figure can be viewed in the online issue,
which is available at www.laryngoscope.com.]
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Further research is also warranted to determine whether
laryngeal protection by fosamprenavir aerosol in vivo was
due to systemic activity or local conversion to
amprenavir. The intestine is the primary site of
fosamprenavir metabolism. Conversion of fosamprenavir
to amprenavir by alkaline phosphatase (ALP), which is
required for its transepithelial flux and subsequent
metabolism by cytochrome P450 enzymes, has been
shown to occur via intestinal ALP at or near the surface
of Caco-2 cells.128,129 It is possible, however, that inhaled
fosamprenavir is converted to amprenavir in the airways
by serum ALP, just as similar phosphate ester prodrugs
are converted by sera collected from healthy subjects.130

Inhaled fosamprenavir may also be converted by salivary
ALP or that expressed by respiratory mucosa and
immune cells recruited to tissue injury.131,132 Given that
ALP is elevated during inflammation132–134 and carcino-
genesis including that of the larynx to which LPR
contributes,10,74,135–137 ALP may be elevated in LPR-
damaged airways thereby increasing fosamprenavir con-
version at the desired site of activity. Drug formulations
that prolong retention in the aerodigestive tract could fur-
ther improve local drug conversion and topical activity.
Research is ongoing in our laboratory to examine the effi-
ciency of fosamprenavir conversion by laryngeal epithe-
lium, saliva, and sera and a dose–response study is
underway in the in vivo mouse model to compare the rela-
tive efficacies of inhaled fosamprenavir and amprenavir
against pepsin-mediated damage.

Although additional experimental data will aid our
understanding of laryngeal protection by fosamprenavir,
LPR symptom improvement will be the ultimate determi-
nant of a successful medical therapy. A randomized
placebo-controlled trial therefore represents the best test
of a therapeutic compound. Such a trial of fosamprenavir
is feasible given that an oral formulation is FDA-approved
and an a priori responder definition of clinically meaning-
ful symptom improvement has been established per FDA
guidelines.138 Intriguingly, pilot epidemiological data
(unpublished) support the therapeutic potential of HIV
protease inhibitors for LPR and warrant follow-up: among
2,062 adult HIV patients prescribed an HIV protease
inhibitor (Froedtert Memorial Lutheran Hospital, Milwau-
kee, WI, July 2014–2016; Medical College of Wisconsin
Institutional Review Board, 13874) just 0.2% had docu-
mented LPR whereas the incidence in the general popula-
tion is 10%–34%.139,140 These data lend preliminary
support for the clinical investigation of fosamprenavir as a
novel therapeutic approach for LPR.

CONCLUSION
Compelling evidence highlights a major role for pep-

sin (independent of gastric acid) in reflux-attributed
laryngeal symptoms and endoscopic findings refractory to
PPI therapy. Fosamprenavir and darunavir, FDA-
approved retroviral therapies for HIV/AIDS, bind and
inhibit pepsin, abrogating pepsin-mediated laryngeal
inflammation and mucosal damage in an LPR mouse
model. These drugs target a foreign virus so are ideal to
repurpose, allowing a clinical trial to assess efficacy for a

much-needed medical treatment for patients faster than
could be achieved with novel compounds. Reformulation
for local inhaled delivery could further improve outcomes
and limit side effects.
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